APTMOE: <u>AFFINITY-AWARE PIPELINE</u> TUNING FOR MOE MODELS ON BANDWIDTH-CONSTRAINED GPU NODES

Yuanxin Wei, Jiangsu Du*, Jiazhi Jiang, Xiao Shi, Xianwei Zhang, Dan Huang*, Nong Xiao, and Yutong Lu

Sun Yat-sun University

Released MoE models

- DeepSeek-MoE, Qwen-MoE, Hunyuan-Large, Mixtral, Databricks...

Model structure

- MoE layer: MHA block + MoE block

- MoE block: gate + experts

• Prons

- Improved model quality
- Consistent serving cost
- Cons
 - More memory requirements

- Perform better on downstream tasks.
- Much less computing power compared to the pre-training phase

- Limited number of GPU nodes interconnected with <u>PCI-e</u>
- Opportunity
 - Cost-effective
- Challenges
 - Bandwidth-constrained
 - Memory-constrained

(a) GPUDirect connect.

(b) No GPUDirect connect.

- Approaches
 - Scale out: more GPUs
 - Scale up: heterogeneous memory

PP is more suitable for bandwidth-constraint environment

Tensor Parallelism (TP)	Pipeline Paralleliam (PP)	ZERO-DP				
memory reduction 😧						
split model along hidden dimention, intra-layer split	split model along layer dimention, inter-layer split	distribute optimizer states , gradients and parameters across devices				
collective communication	P2P communication	collective communication 🙁				
 Device 0 Device 1 Device 2 Device 3 		Image: state stat				

Scale Up Appraoch: Offloading

Offloading can further expand the model size

- Leverage <u>heterogeneous memory</u>
 GPU memory, CPU memory, Disk
- Move weight/activation to CPU, prefetch when needed

• Prons

- Alleviated GPU memory pressure

• Cons

- CPU-GPU communication overhead (can be overlap)
- CPU parameter update overhead (can not be overlap, but it is slight)

- Divide layers into multiple **<u>stages</u>**, each stage consisting of multiple consecutive layers
- One GPU is respondsible for **multiple pipeline stages**
- Prefetch the next stage while the current stage is executing
- Offload the stage (weight and activation) after execution

$F_{0,0}$ $F_{0,1}$ $F_{0,2}$ $F_{0,3}$ $F_{4,0}$ $F_{4,2}$ $F_{4,2}$ $F_{4,3}$	$B_{4,0}$ $B_{4,1}$ $B_{4,2}$ $B_{4,3}$ $B_{0,0}$ $B_{0,1}$ $B_{0,2}$ $B_{0,3}$
Load Stage 4	Load Stage 0
F_{1,0} F _{1,1} F _{1,2} F _{1,3} F_{5,0} F _{5,1} F _{5,2} F _{5,3}	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Load Stage 5	Load Stage 1
$F_{2,0}$ $F_{2,1}$ $F_{2,2}$ $F_{6,0}$ $F_{6,0}$ $F_{6,1}$ $F_{6,2}$ $F_{6,3}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Load Stage 6	Load Stage 2
F_{3,0} F _{3,1} F _{3,2} F _{7,0} F_{7,0} F _{7,1} F _{7,2} F	$\mathbf{B}_{7,2}$ $\mathbf{B}_{7,0}$ $\mathbf{B}_{7,1}$ $\mathbf{B}_{7,2}$ $\mathbf{B}_{7,3}$ $\mathbf{B}_{3,0}$ $\mathbf{B}_{3,1}$ $\mathbf{B}_{3,2}$ $\mathbf{B}_{3,0}$
Load Stage 7	Load Stage 3

Challenge: Computation Blocking

- Increased ratio of data to computation in MoE models
- Need more time for loading the next stage
- Computation blocking, wasted computational resources

Leverage the expert popularity for system-side optimization

• Skewness

- Most input tokens will select a small portion of experts.

Real-time

- Dynamically decided by the gate operation located right before experts.
- Real-time expert popularity

Predictability

- Using approaches (neural networks, statistics, hashing function) to make prediction
- Predicted expert popularity

Temporal Locality

- A few experts are always activated with high intensity within a time period.
- Historical expert popularity

- Skewed expert popularity -> variations in computational intensity
- Pre-experiment
 - loading, CPU computing, and GPU computing of a single expert
 - Intel Xeon Gold 6348 CPU with 28 Cores and Nvidia A800 GPU

• Key Idea: allocate expert computation across both GPUs and CPUs based on affinity

Benifits

- improved computational efficiency
- better memory management

Challenges

- which experts to load -> hierarchical loading strategy
- when to load -> demand-priority scheduling scheduling

- Three hierarchies: inter-stage, inter-layer, inter-expert
- Loading decision management
 - Three queues, each for one loading hierarchy with different priorities
 - Manage load decisions by adding or removing the names of model blocks

Inter-stage Phase

- Overlapping space between the s-th stage computation and the (s+1)-th stage loading
- Occurs when switching pipeline stages
- Decide to load MHA blocks and gate operations (high computational intensity)
- Decide to load historical high-demand experts

- Inter-layer Phase
 - Overlapping space between the *i*-th layer computation and the (*i*+1)-th layer loading
 - Occurs when executing different model layers within one pipeline stage
 - Load predicted high-demand experts
 - Loading decision: R metric

- Inter-layer Phase: Predictor Design
 - Location: one or a few layers ahead of the gate operation
 - Structure: same as the gate operation
 - Weight initialization: takes the weight of the corresponding gate operation
 - Training: use same activation as input, and takes steps of training for better prediction

Inter-expert Phase

- Overlapping space between the 0-th expert computation and the last expert loading
- Occurs when executing different experts within one model layer
- After generating the real expert activation (gate operation)
- Load *real-time* high-demand experts

- Backward: Inter-stage Phase Only
 - All accurate expert popularity is already known
 - Globally optimal allocation scheme

Demand-priority Scheduling Strategy

When to load ?

- Three loading phases cannot execute concurrently (one PCIe lane in the same direction)
- Coordinating three loading phases
- CUDA kernel scheduling to maintain priority
- Inter-stream synchronization to maintain dependency

Putting It All Together: APTMoE Workflow

APTMoE Static profiles <u>memory usage</u> and <u>execution time</u> on the targeted model and devices, then generate <u>layer-to-stage mapping</u> and computational affinity lookup table.

APTMoE runtime takes the <u>affinity-aware</u> <u>offloading</u> for efficient fine-tuning.

Testbeds

- 4 nodes, 8 * A100(40GB) per node, 1024 GB main memory per node
- Every 4 GPUs connect to one Intel Xeon Gold 6348 CPU with 28 cores
- GPUs interconnectted with PCI-e

Experiment Design

- Genelized case study

-> varying expert size and #experts

-> simulated expert popularity

- Real case study

- > model: NLLB-MoE, Mixtral- $8 \times 7B$
- > dataset: APP dataset
- **Baseline:** GPipe, GPipeOffload, Mobius
- Metric: fine-tuning throughtput (sequences/s)

model	# layers	expert size	# experts	model size
MoE-S-8	64	[1024, 4096]	8	4.5B
MoE-S-16			16	8.8B
MoE-S-64			64	34.6B
MoE-M-8	64	[2048,8192]	8	18.2B
MoE-M-16			16	35.2B
MoE-L-8	64	[4096,14336]	8	61.2B

> Overall Performance

APTMoE yields positive speedup compared to all baseline methods across all models

Impacts of #experts on Performance (a)(b)(c)

#experts increases -> pronounced impact of expert popularity on the throughput

Impacts of expert size on Performance (a)(d) larger expert size -> decreased speedup

Predictor Accuracy

- Token accuracy
 - prediction accuracy per token
 - 85% for Mixtral-8x7B, 64% for NLLB-MoE
- Expert accuracy
 - prediction accuracy of expert popularity order
 - 100% for Mixtral-8x7B , 94% for NLLB-MoE

Performance

- NLLB-MoE: **15%** over Mobius, **32%** over GPipeOffload
- Mixtral-8×7B: **4%**↑ over Mobius, **20%**↑ over GPipeOffload

• **APTMoE**: affinity-aware pipeline fine tuning system for MoE models targeting at bandwidth-constrained GPU nodes

Approaches

- Hierarchical loading strategy
- Demand-priority scheduling Strategy
- Enable fine-tune larger model under constrained resources, and improve performance by 33%.
- Reconsider the role of **CPUs** in AI infrastructure

THANK YOU FOR LISTENING!

APTMOE: AFFINITY-AWARE PIPELINE TUNING FOR MOE MODELS ON BANDWIDTH-CONSTRAINED GPU NODES

Yuanxin Wei, Jiangsu Du*, Jiazhi Jiang, Xiao Shi, Xianwei Zhang, Dan Huang*, Nong Xiao, and Yutong Lu

Sun Yat-sun University

