Yuanxin Wei

weiyx25@mail2.sysu.edu.cn ·

EDUCATION

Sun Yat-sen University, Computer Science and Technology, PH.D	2023/09 - present
Lab: National Supercomputing Center in Guangzhou	
Advisor: Prof. Nong Xiao	
Research Interests: Machine learning system and high performance computing	
Sun Yat-sen University, Computer Science and Technology, Bachelor	2019/09-2023/06
• GPA: 3.94/5.0	
• 2023 Outstanding Undergraduate Graduates of Sun Yat-sen University (Top-5%)	
• Courses: Operating system, database, computer network, parallel and distributed comp	uting
Research Experience	

Fine-tuning MoE Models with Affinity-aware Pipeline Parallelism

- Design the APTMoE system for fine-tuning MoE models on bandwidth-constrained scenarios.
- Propose a hierarchical loading strategy for computing affinity awareness by strategically offloading a portion of experts to CPU for computation.
- Propose a demand-priority scheduling strategy that dynamically coordinates the loading behaviors, for alleviating mutual interference between different loading phases and maximizing the bandwidth utilization.
- Accepted by SC 2024 (22.7%).

Communication-Efficient Distributed Inference for Transformer Models

- Design a communication-efficient distributed inference system, DeTransformer.
- Adopting the concept of co-deign, propose block parallelism through model structure decoupling, incorporated with a model adaptive execution method that dynamically balances the computing power, communication power, and memory capacity of devices.
- Conduct accuracy experiments through pre-training Bert and GPT2 models, and validate their accuracy on downstream tasks; Conduct performance experiments, and achieve 2.81x inference performance improvement on 4 Raspberry Pi devices in an edge bandwidth environment.
- Accepted by DATE 2024 (25%).

WORKING EXPERIENCE

Alibaba • PAI • Beijing • Research Intern

• Conduct research and optimize the training performance of MoE models.

ByteDance • Lark • Shenzhen • Technical Support

• Collaborate to solve technical problems, and settle issues.

Skill

- Coding: C, C++, Python
- Tools: OpenMP, MPI, CUDA, PyTorch, Mathlab, ${\ensuremath{\mathbb MT}}_{E\!X}$
- English: CET-4 and CET-6

2024/07-present

2022/05-2022/10

2023/09-2024/03

2023/04-2023/09

Awards

Chinese National scholarship, Ministry of Education of PRC, Top-1%	2021/12
• Principal scholarship, Sun Yat-sen University, Top-5%	2023/09
• First-Prize scholarship, Sun Yat-sen University, Top-5%	2021/09
• Second-Prize scholarship, Sun Yat-sen University ×2, Top-10%	2020-2022
• Outstanding undergraduate thesis, Sun Yat-sen University, Top-5%	2023/06

PUBLICATION

- Yuanxin Wei, Shengyuan Ye, Jiazhi Jiang, Xu Chen, Dan Huang*, Jiangsu Du*, Yutong Lu, *Communication-Efficient Model Parallelism for Distributed In-Situ Transformer Inference*, in Design, Automation & Test in Europe (DATE), 2024, CCF-B.
- Yuanxin Wei, Jiangsu Du*, Jiazhi Jiang, Xiao Shi, Xianwei Zhang, Dan Huang, Nong Xiao, Yutong Lu*, *APT-MoE: Affinity-aware Pipeline Tuning for MoE Models on Bandwidth-constrained GPU Nodes*, in International Conference for High Performance Computing, Networking, Storage, and Analysis (SC), 2024, CCF-A.